Quantitative 2 – Gases, solutions & atom economy

Reading – page 46-49

<u>Knowledge</u>

1. What volume does 1 mole of a gas occupy at room temperature and pressure?		
2. What is the equation linking concentration, mass and volume?		
3. What is the equation linking mass, moles and formula mass?		
4. What is 'Atom Economy'?		
5. What is 'yield'?		
6. What is 'theoretical yield'?		
7. What is the symbol for a reversible reaction?		
8. How do you convert cm³ into dm³?		
<u>Application</u>		
1. What is the formula for calculating atom economy?		
2. Calculate the atom economy in these reactions used in the chemical industry. Give all answers to 2 sig figs.		
a) $CaCO_3 \rightarrow CaO + CO_2$ to produce CaO		
b) $Cl_2 + 2NaOH \rightarrow NaClO + NaCl + H_2O$ to produce NaClO		
c) CuO + $H_2SO_4 \rightarrow CuSO_4 + H_2O$ to produce CuSO ₄		
3. What volume is occupied by these gases at room temperature and pressure:		
a) 3.5 moles of O ₂		
b) 4g of H ₂		
-, U- 4		

c)	3.55g of Cl ₂
d)	0.002g of He
4. W	t volume of chlorine is needed to produce 4.68g sodium chloride? 2Na + Cl₂ → 2NaCl
5. Gi	two reasons that percentage yield is always less than 100%
6. A	dent wanted to make 11.0 g of copper chloride.
The	uation for the reaction is:
	$CuCO_3 + 2HCI \rightarrow CuCl_2 + H_2O + CO_2$
	te the mass of copper carbonate the student should react with dilute hydrochloric acid to make 11.0 g per chloride.
	Mass of copper carbonate = g
(c)	he percentage yield of copper chloride was 79.1 %.
	Calculate the mass of copper chloride the student actually produced.
••••••	
7 a) '	Actual mass of copper chloride produced = $__\g$ g nat mass of CuSO $_4$ would you need to weigh out to make a 1 M solution?
•••••	
b) W	t volume of water would you need to dissolve it in?
c) If	u measured out 20cm³ of this solution, what mass of CuSO4 would it contain?